Text Mining Support for Semantic Indexing and Analysis of A/V Streams

نویسندگان

  • Jan Nemrava
  • Paul Buitelaar
  • Thierry Declerck
چکیده

The work described here concerns the use of complementary resources in sports video analysis; soccer in our case. Structured web data such as match tables with teams, player names, score goals, substitutions, etc. and multiple, unstructured, textual web data sources (minute-by-minute match reports) are processed with an ontology-based information extraction tool to extract and annotate events and entities according to the SmartWeb soccer ontology. Through the temporal alignment of the primary A/V data (soccer videos) with the textual and structured complementary resources, these extracted and semantically organized events can be used as indicators for video segment extraction and semantic classification, i.e. occurrences of particular events in the complementary resources can be used to classify the corresponding video segment, enabling semantic indexing and retrieval of soccer videos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Text Mining Support in Semantic Annotation and Indexing of Multimedia Data

This short paper is describing a demonstrator that is complementing the paper “Towards Cross-Media Feature Extraction” in these proceedings. The demo is exemplifying the use of textual resources, out of which semantic information can be extracted, for supporting the semantic annotation and indexing of associated video material in the soccer domain. Entities and events extracted from textual dat...

متن کامل

Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support

Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...

متن کامل

تأملاتی بر نمایه‌ سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه

Purpose: This paper presents various  image indexing techniques and discusses their advantages and limitations.             Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...

متن کامل

Concept Lattice Generation by Singular Value Decomposition

Latent semantic indexing (LSI) is an application of numerical method called singular value decomposition (SVD), which discovers latent semantic in documents by creating concepts from existing terms. The application area is not limited to text retrieval, many applications such as image compression are known. We propose usage of SVD as a possible data mining method and lattice size reduction tool...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008